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We have studied the phase diagram for chromatin within the framework of the two-angle model. Only a
rough estimation of the forbidden surface of the phase diagram for chromatin was given in a previous work of
Schiessel. We revealed the fine structure of this excluded-volume borderline numerically and analytically.
Furthermore, we investigated the Coulomb repulsion of the DNA linkers to compare it with the previous
results.
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I. INTRODUCTION

The basic repeat unit of the chromatin fiber �1� of all
eucaryotic organisms is the so-called nucleosome, which
consists of a cylindrical shaped histone complex and a
stretch of DNA. This DNA stretch is wrapped around the
histone disks approximately two times and connects them
with each other. The histone complex consists of four pairs
of core histones �H2A, H2B, H3, and H4� and is known up to
atomistic resolution �2�. The nucleosomes form the next
level of DNA compaction which is called the chromatin or
30-nm fiber.

The degree of compaction depends on the salt concentra-
tion �3� and on the presence of linker histones �4�. The pres-
ence of the linker histones leads to the formation of stemlike
structures which are formed by the in- and outcoming DNA
string. At low salt concentration a 10-nm structure is formed
which has the shape of beads on a string �3�, whereas at high
salt concentrations the chromatin fiber is much more com-
pact and has a diameter of 30 nm �5�.

The chromatin structure is still not completely understood
�1,6,7�. There are two competing models for its structure:
The crossed-linker models �4,8–10� and the solenoid models
�3,11,12�. In the case of the crossed-linker models the DNA
linkers between the histone complexes are straight and con-
secutive nucleosomes sit on opposite sides of the chromatin
fiber whereas in the case of the solenoid models one assumes
that the linker DNA is bent and the nucleosomes form a
helix. The chromatin fiber has been investigated by electron
cryomicroscopy �4,13�, atomic force microscopy �14,15�,
neutron scattering, and scanning transmission electron mi-
croscopy �16�.

The two-angle model �see the next section� was intro-
duced by Woodcock et al. �8� to describe the geometry of the
30-nm chromatin fiber. It has been shown that the excluded
volume of the histone complex plays a very important role
for the stiffness of the chromatin fiber �17� and for the topo-
logical constraints during condensation and decondensation
processes �18�. In Ref. �19� a rough approximation of the
forbidden surface in the chromatin phase diagram was given.
In this work we want to answer the still open question of the
fine structure of the excluded volume borderline which sepa-
rates the allowed and forbidden states in the phase diagram.
We revealed this borderline with simulations and analytical
methods and the results of these two approaches are in very
good agreement.

II. TWO-ANGLE MODEL

We will give some basic equations and a proper math-
ematical definition for the two-angle model in this section.
Equations �1�–�6� will be used in the next part, where we
will calculate the fine structure of the forbidden surface in
the chromatin phase diagram.

The two-angle model describes the chromatin structure at
the 30-nm scale by the following three parameters: the entry-
exit angle �, the rotational angle �, and the linker length b
�cf. Fig. 1�. Let us consider four consecutive nucleosome
locations �cf. Fig. 1�: N0, N1, N2, and N3�R3 within the fiber:
If N0, N1, and N2 are given then the next nucleosome loca-
tion N3 is determined by fulfilling the following conditions:

�i� ���N0−N1� , �N2−N1��=�;
�ii� �N2−N1 � =b2 , �N0−N1 � =b1 , �N3−N2 � =b3, with

b1 , . . . ,b3=b;
�iii� Pª �r�R3 � $� ,��R, such that r=N1+��N0−N1�

+��N2−N1�� P�ª �r�R3 � $�� ,���R, such that r=N1

+���N2−N1�+���N3−N1�� ��P , P��=�.
By straightforward considerations this leads to the follow-

ing expression for N3 in the dependence of N0, N1, and N2:

N3 = R�
ŵR�−�

v̂ 	N2 + b3
�N2 − N1�
�N2 − N1�


v̂ ª

�N2 − N1� � �N0 − N1�
��N2 − N1� � �N0 − N1��

; ŵ ª

N1 − N2

�N1 − N2�
,

where �N2−N1 � =b2 and R�
v is the orthogonal rotational

transformation matrix defined by the axis v�R3 and the rota-
tion angle ���0,2�� �with respect to the right-hand rule�.

Note that the chromatin fibers described by these equa-
tions do not show a tangential distance between the ingoing
and the outcoming DNA linkers, which is a consequence of
the H1 histone stems in real chromatin fibers. Furthermore,
this geometrical model assumes straight linkers between
consecutive nucleosome complexes. A more detailed look at
the two-angle model is provided by Schiessel in Ref. �19�.

He also showed that for every ideal chromatin fiber with a
certain set of values ��, �, b� it is possible to construct a
spiral with radius R and a gradient m so that all the nucleo-
somes are located on this spiral. The parametrization of the
spiral is
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	�t� ª�R cos	at

R



R sin	at

R



t
� , t�R ,

where R is the radius and m= 1
a is the gradient of this master

solenoid. The distance between two consecutive nucleo-
somes along the z axis will be denoted by d in the following.

Furthermore, Schiessel showed in his work the following
three equations, which relate R, a, and d to �, �, and b and
thus the global fiber geometry to these local variables:

b2 = 2R2
1 − cos	ad

R

� + d2, �1�

cos�� − �� =

2R2cos	ad

R


1 − cos	ad

R

� + d2

2R2
1 − cos	ad

R

� + d2

, �2�

cos��� =

d2cos	ad

R

 + R2sin2	ad

R



d2 + R2sin2	ad

R

 . �3�

The inverse transformation will be very useful, too:

R =

b cos	�

2



2
1 − sin2	�

2

cos2	�

2

� , �4�

m =

2 sin	�

2

�1 − sin2	�

2

cos2	�

2



cot	�

2

arcos
2 sin2	�

2

cos2	�

2

 − 1� , �5�

d =

b sin	�

2



�csc2	�

2

 − cos2	�

2

 �

��1 b�

2�csc2	�

2

 − 1

+ o���3.

�6�

III. PHASE DIAGRAM

In this section the calculation of the fine structure of the
excluded volume borderline is presented. Furthermore, we
used a simple model to simulate the chromatin fiber: We
used the two-angle model to generate chromatin fibers and
then checked which states are the forbidden ones in the phase
diagram. We assumed a spherical excluded volume �of radius
5 nm� and a linker length of 21 nm for both cases. Remem-
ber that the linker length b is the distance between the cen-
ters of the nucleosomes and not the “real” length of the link-
ers. At the end of this section the calculations and the
simulational results are compared.

Figure 2 shows a picture of the chromatin phase diagram:
Every set of angles �� ,�� represents a particular structure in
the two-angle model �the linker length b is considered to be
constant�. A detailed discussion of all possible structures and
the phase diagram can be found in Ref. �19�. We will con-
centrate here on the case �=0 since it will turn out that these
planar structures are very important for the calculation of the
forbidden surface.

If ���, the fiber forms a circle �with radius R� b
�−� as

follows from Eq. �4��. Its radius converges towards infinity
for �→�. For particular values of � the fiber forms regular
polygons. For instance, the value �= �

2 corresponds to the
square and �= �

3 is the regular triangle �cf. Fig. 2�. To char-
acterize these regular polygons one needs two variables: At

FIG. 1. �Color online� Basic definitions of the two-angle model:
The entry-exit angle �, the linker length b, and the rotational angle
�. The cylinders represent the nucleosomes.

FIG. 2. �Color online� The chromatin phase diagram with some
chromatin structures for different values of � and �. The solenoid
and crossed-linker structures are most important. The dotted line is
the function 
��� which represents the border of the forbidden
surface.
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first the number of the tips i and second the number of loops
the fiber needs to arrive at the starting point again, which we
will call the “order” n of the polygon in the following.

These special values are given by

�i
n = � − 	n2�

i

, with i,n�N and i � 2n, such that

$”n�,i��N with n� � n and �i
n = �i�

n���� . �7�

The order n of �i
n is a measure of its influence on the

forbidden surfaces of the excluded volume structure of the
phase diagram. Therefore all different values of �i

n have to
be sorted by n first and second by i—this makes the condi-
tion ��� necessary: For example, �3

1=�6
2=�9

3 but the order of
these three �i

n is always n=1 and therefore they are all in the
same equivalence class �the special case i=2n leads to one-
dimensional structures with �2

1=0—this value �i
n of highest

order in n and i plays an important role for the forbidden area
in the phase diagram and is therefore mentioned here, too�.
We will show that it is possible to characterize all peaks of
the forbidden surface by these two parameters n and i. This
classification is shown in Fig. 4.

The condition ��� simply means that n and i have to be
coprime. Remember that �i

n depends only on the relation n
i .

We give a proof of this equivalence in the Appendix:

��� Û $”�,�,b � N with n = �b and i = �b��� .

Now consider the case that n and n� are coprime with
n�
n, i�2n, and i��2n� such that n

i , n�
i�

� 1
N �which means

that they are not equivalent to any order-1-value of �i
n�. Fur-

thermore, assume that n�
i�

= n
i Þ i�= � n�

n
�i, it is clear that

� n�
n

��N and i�N, therefore $��N so that i=�n which con-
tradicts � i

n
��N. This means that if two orders n1 and n2 are

coprime with n1 ,n2
1, there are never equal values of �i
n1

and �i�
n2 for all possible i�2n, i��2n�, and i , i��N. For

example, n and n+1 are always coprime numbers and there-
fore have never common �i

n.
So for a given order n the possible values of �i

n depend on
the prime factor dismantling of n and therefore are very ir-
regular. If n is a prime number, all i�2n with i�nN are
allowed: For n=2 all i�4 with i�2N are allowed and for
n=3 all i with i�2n, i�3N are allowed �and for n=1 all i
�2 are allowed�. So between two values of �i

1 there is one
of �i

2 and two of �i
3.

The distances �i1
n =�i2

n −�i1
n between two consecutive i2


 i1 are given below for the first three and additional for all
prime orders:

n = 1:�i
1 = � −

2�

i
, �i � 2n� Þ �i

1 =
2�

i�i + 1�
,

n = 2:�i
2 = � −

4�

i
, �i � 2n and i � 2N� Þ �i

2 =
8�

i�i + 2�
,

n = 3:�i
3 = � −

6�

i
, �i � 2n and i � 3N� Þ �i

3

=
mod�i,3�6�

i�i + mod�i,3��
,

n prime:�i
n = � −

n2�

i
, �i � 2n and i � nN� Þ �i

n

=
mn2�

i�i + m�
, m = �1 if mod�i,n� � n − 1

2 if mod�i,n� = n − 1
�.

Furthermore, this shows that the distances �i
n →

n→�

0, be-
cause the counter is always �n and the leading term of the
denominator is at least �n2 �remember i
2n�.

The most interesting structures of the chromatin phase
diagram are the following two cases: solenoidlike structures
and fibers with crossed linkers. An extensive discussion of
these two structures can be found in Ref. �19� and here a
short overview will be given since we need some basic equa-
tions of these structures for our further calculations.

For small ��1 and ��� the chromatin fibers resemble
solenoids. The condition � da

R
��1 and Eqs. �1�–�3� lead to the

geometrical properties of the solenoidlike fibers: The radius
of the fiber is r and lN is the length of a fiber of N monomers
�19�:

r =
b�� − ��

�2 + �� − ��2 , lN =
bN�

��2 + �� − ��2
.

The vertical distance � between two loops plays an im-
portant role in the following sections. It can be obtained by
�� l 2�

�−�
, which leads to

� �
	 2�

� − �

b�

��2 + �� − ��2
. �8�

One can also calculate the exact value of � by

� = �
t=0

2�r/a

m„	�t����	x��t�,	y��t�…
t�dt =

4b� sin��/2�sin��/2�
arcos�2 cos2��/2�sin2��/2� − 1��3 + cos��� + �cos��� − 1�cos���

.

However, the approximation �8� is much more useful.
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Now let us consider the crossed-linker fibers. Consider
the case ��1 and ���: Above the regular polygons have
been discussed. For a nonvanishing � these regular polymers
open up in an accordionlike manner. This leads to three-
dimensional fibers with crossed linkers �cf. Fig. 2�. Using
��1 and Eqs. �1�–�3� one gets �cf. Ref. �19��

r =
b

2 cos��/2�
1 −
�2

4
cot2	� − �

2

� ,

lN =
N�b

2
cot	� − �

2

 .

Now � follows again from �� l 2�
�−�

:

� �
1

2
	 2�

� − �

�b tan	�

2

 . �9�

Now we will turn to the calculation of the forbidden sur-
face of the chromatin phase diagram. It will turn out that the
excluded-volume borderline, which separates the forbidden
states from the allowed ones, is a function of �. We will call
it 
 and calculate it in the following part of this section. This
borderline is shown in Fig. 2 as a dashed line, too. The
interesting part of the phase diagram for the excluded-
volume phase transition is the lower one with �
� �0° ,30° �. This cutout of the phase diagram is shown in
Fig. 3.

Every “peak” of 
 corresponds to a regular polygon: The
large peaks correspond to polygons of order 1 and the
smaller ones to order 2 and order 3 polygons. Between two
order-1 peaks there is one order-2 peak and two order-3
peaks. The classification of these peaks is shown in Fig. 4: 

has local maxima at every �i

n.
The planar structures which belong to ��i

n ,�=0� need a
large rise of � to arrive in the area of the excluded volume
structures, because at �=0 nucleosome k and k+ n2�

�−�i
n are

located exactly at the same position. At first, consider only
the special values �i

n: At first order increasing � from 0 to

some value �̃ leads to a vertical movement �i
n��̃� of the

relevant nucleosomes k and k+ n2�

�−�i
n along the chromatin

axis. Assuming a spherical hard-core excluded volume of

radius r for the nucleosomes we get �i
n��̃�=dÞ
��i

n�= �̃.

For large �, �i
n��̃� can be calculated by Eq. �8� and one

finds

�i
n��̃� =

n	 2�

� − �i
n
b�̃

��̃2 + �� − �i
n�2

; �10�

with �
0 this leads to

�̃i
n��i

n� =� ��i
n�� − �i

n��2

b2n2	 2�

� − �i
n
2

− ��i
n�2

�11�

and, furthermore, �i
n˜ �d�=
��i

n� implies


��i
n� =� d2�� − �i

n�

b2n2	 2�

� − �i
n
2

− d2

. �12�

Figure 5 shows the numerically calculated 
 function and the
theoretical predictions for the maxima. As Eq. �10� shows,

�i
n��̃��n. This means that planar structures at an �i

n of
higher order need a smaller rise of � to fulfill the excluded
volume conditions and therefore 
 is decreasing with increas-
ing �. In fact this is the reason why n is called the order of
the peaks of 
. It can be easily understood if one remembers
the fact that a higher order means more nucleosomes are
located between two overlapping ones. And thus a rise of �
has a stronger effect than at lower orders.

As �i
n��̃�→0 for �i

n→� the maxima of 
 converge to-
wards 0 for �i

n→�. There are infinitely many �i
n for n→�

and the distance �i
n converges to zero, so 
 has infinitely

FIG. 3. �Color online� Fine structure of the excluded-volume
“phase transition.” The chromatin fibers beneath the borderline ful-
fill the excluded volume conditions, those above do not. The bor-
derline is the function 
���.

FIG. 4. �Color online� Excluded volume borderline and the clas-
sification of its peaks.
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many local maxima and minima for �i
n→�. It is clear that


���=0 as the fiber forms a fully stretched fiber �a circle of
radius r=��. This explains the forbidden strip at the left side
of the figures as the maximum of highest order �1,2� with a
corresponding one-dimensional structure.

So far, 
 is only known at the positions of the maxima �i
n.

Now consider values of �, which are close to an �i
n, say

��=�i
n±�� �“close” means such �� which lead to a shift

�a�2r�. This leads to a slight shift �a of those nucleosomes
which are located at the same places �namely, k and k
+ � n2�

�−�
��. At �=0 this shift �a is orthogonal to the fiber’s

axis. This time �i
n still denotes the distance between the nu-

cleosomes k and k+ � n2�
�−�

� along the fiber’s axis, but now they
are not located at the same spots but slightly shifted. There-
fore their distance � is no longer equal to their distance �i

n

along the axis, when increasing �.
In this case increasing � still leads to a movement along

the vertical axis of the fiber, but now the distance � of nu-
cleosome k and k+ � n2�

�−�
� increases like �2��a2+ ��i

n�2. The
fiber fulfills excluded volume, when �=2r, which means

�i
n = �4r2 − �a2 � 2r .

So the critical value of �i
n, which has to be achieved to fulfill

excluded volume, decreases with increasing �a. Therefore 

has a local maximum at �i

n: 
��i
n±����
��i

n�.
To calculate �ai,n in dependence of �� imagine a planar

structure of j nucleosomes with an entry-exit angle ��
=�i

n±�� of two consecutive octamers. The locations of
these nucleosomes are denoted by p0 , p1 , p2 , . . . , pj−1�R3.
Without loss of generality one can assume

p0 = �0

0

0
�, p1 =�b cos	��

2



b sin	��

2



0
� and

"k � 2:pk = pk−1 + R�pk−1 − pk−2�

with R ª R�−��
z = � cos�� − ��� sin�� − ��� 0

− sin�� − ��� cos�� − ��� 0

0 0 1
�

the rotational matrix along the z axis. This leads to

pk = �
m=0

k−1

Rmp1 " k 
 0.

Now �ai,n is given by �ai,n= �pk=i�, which leads to

�ai,n = ��
m=1

i

Rm−1p1� �13�

�where R and p1 depend on i, n, and ���. Now one can use
Eq. �11� to calculate 
 around the maximal values �i

n:

n	 2�

� − ��

b
����

�
����2 + �� − ���2
=! �4r2 − �a2 Þ



0


��� = �i
n ± ��� =� 	4r2 − ��

m=1

i

Rm−1p1�2
�� − ���2

b2n2	 2�

� − ��

2

− 4r2 + ��
m=1

i

Rm−1p1�2 . �14�

Similar to the case of large � one can find equations for 
 of small �: In this case Eq. �9� leads to

�i
n��̃� =

1

2
n	 2�

� − ��

�̃b tan	��

2



with ��=�i
n±��. Now again 
���� follows from �̃��i

n=�4r2−�ai,n
2 �=
����:

FIG. 5. �Color online� Calculated theoretical prediction �dashed
line� and the simulation result �solid line� for the excluded volume
borderline of the chromatin phase diagram.
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Þ
��� = �i
n ± ��� =

cot	��

2



n	 2�

� − ��

b

�4r2 − ��
m=1

i

Rm−1p1�2

.

�15�

��� � �c fulfilling �a�c�=2r gives the interval of the al-
lowed � values: ��� ��i

n−c ,�i
n+c� for a certain peak �n , i�.

The predictions of Eqs. �14� and �15� are shown in Figs. 5
and 6 together with our simulation results.

IV. EXCLUDED VOLUME RESTRICTIONS OF THE DNA
LINKERS

As mentioned before the nucleosome-nucleosome ex-
cluded volume interactions are not the only ones within the
chromatin fiber. The DNA linkers have a diameter of about
2 nm and therefore excluded volume restrictions, too. This is
in particular very important for all crossed-linker structures.
But since the DNA linkers have a very strong �although
screened� Coulomb repulsion their excluded volume interac-
tions can be revealed by looking at the Coulomb energy be-
tween the linkers. Other potentials like the nucleosome-
nucleosome interaction or the interaction between DNA
linkers and nucleosomes will be neglected here.

One can use the Debye-Hückel theory to model the Cou-
lomb repulsion of the DNA linkers, but since the screening
of this interaction starts at the radius of the DNA strand and
due to the condensation of ions along the DNA linkers, one
has to calculate a correction of the screened potential by
fitting the tail of the Debye-Hückel potential for an infinitely
long cylinder to the Gouy-Chapman potential in the far zone.
This calculation can be found in Refs. �20,21� and leads to a
corrected linear charge density �eff which is also given in the
table above for different levels of monovalent salt concentra-
tion and can be found in Ref. �22�, for instance. During the

last two to three decades DNA models based on such poten-
tials have been developed and applied widely, and their pre-
dictions are usually very good �23–29� �see Table I�.

So one can calculate the Coulomb repulsion between the
DNA segments i and j by evaluating

Vi,j =
�eff

c
� � e−�ri,j

ri,j
dxidxj , �16�

where c is the total dielectric constant of water. These two
integrals were numerically calculated and the results for the
Coulomb energy of a single chromatin linker within a fiber is
shown in Fig. 7.

One can see that the Coulomb repulsion of the linkers is
very high within the gaps of the excluded volume borderline.
The repulsion also diverges for the crossed linker fibers
when � becomes too small.

V. DISCUSSION AND CONCLUSION

We used a spherical excluded volume to model the nu-
cleosomes but since the radius �5 nm� and the height �6 nm�
of the histone complex are nearly coincident this should be a
suitable approximation. With a cylindrical excluded volume
the peaks of the excluded volume borderline would show
edges.

The DNA compaction plays a very important role for eu-
caryotic cells. Billions of base pairs have to fit into volumes
with diameters of the order of a micron. The most compact,
but still allowed, states are those close to the excluded vol-
ume borderline. A measurement �30� of the statistical distri-
bution of the nucleosome repeat lengths indicates a value for

FIG. 6. �Color online� Calculated theoretical prediction �solid
line� and the simulation result �dashed line� for the excluded vol-
ume borderline of the chromatin phase diagram.

TABLE I. Screening of the Coulomb repulsion.

cS �10−2 M� 1 2 3 4 5

� �nm−1� 0.330 0.467 0.572 0.660 0.738

�eff �e /nm� −2.43 −2.96 −3.39 −3.91 4.15

FIG. 7. Coulomb repulsion of the DNA linkers in kT. Shown are
also two cuts in the inset.
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�min of 36° �9�, but since chromatin fibers in living cells are
strongly fluctuating, it is likely that short parts of the fiber
can come very close to the excluded volume borderline or
even use its gaps to contribute to the compaction of the
whole genome. The cell might use this as a �further� statis-
tical effect to achieve the strong compaction of the chromatin
fiber.

We showed that the Coulomb repulsion of the DNA link-
ers is very high within the very compact states of the gaps of
the excluded volume boderline, but one has to keep in mind
that we neglected the internucleosomal interactions and the
interactions between the linkers and the nucleosomes. Attrac-
tive potentials might reduce the total energy of these states
again. Unfortunately the internucleosomal potential is not
well known yet.
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APPENDIX

We will show here that the conditions ��� and ���
are equivalent: $”n� , i��N with n��n and �i

n

=�i�
n����Û$”� ,� ,b�N with n=�b and i=�b���.
“Þ” Let n be an arbitrary element of N. Now assume that

i�N, i�2n and n and i have a common divisor b, i.e., $�,
�, and b�N such that i=�b and n=�bÞ n

i = �b
�b = �

� = n/b
i/b , fur-

thermore, i�2n indicates i
b �2 n

b Þ �
� �

1
2 which means

$n� , i��N with i��2n� and n�
i�

= n
i , namely, n�=� and i�=�.

This means ¬� implies ¬� which is equivalent to �Þ�.
“Ü” To prove the other implication above it suffices to

show that if n and i are coprime, there are no numbers m, j
with m�n such that nj=mi. Dividing this equation by
gcd�n ,m� one gets a new equation of the same structure with
m� and n� instead of m and n, fulfilling gcd�m� ,n��=1.
Moreover, gcd�n , i�=1 leads to gcd�n� , i�=1. Thus
gcd�m�i ,n��=1Þ j=1 which contradicts to j
2n.

The following effects have to be considered to explain the
differences between the calculated theoretical predictions
and the simulational results. The effective entry-exit angle �e
is the projection of � onto a plane which is orthogonal to the
axis of the master solenoid. It decreases with increasing �.
This is a consequence of the fact that the length of the fiber
increases with increasing �. �e is important for the calcula-
tion of the number of linkers which form a closed loop: Nl

= 2�
�−�e

� 2�
�−�e

gives the number of breaks of �e which has to
be done to get a full loop. If 2�

�−�e
is an integer, this is equal

to the number of linkers, which corresponds to a full loop. If

it is not an integer number, then the fractional part gives the
fraction of �−�e which is missing for a full loop, but the
entry-exit angle is fixed here and it is assumed that Nl

= 2�
�−�e

�. In the calculations above �e=�=const was assumed,
because only small � were considered. �e will be calculated
as a function of � and � below. It converges towards 0 for
�→� for different values of � and �. To calculate �e con-
sider three consecutive nucleosome locations within a given
fiber: n0, n1, and n2�R3. Without loss of generality one can
assume: n0= p0, n1= p1+ p0, and n2= p2+ p1+ p0 where the pi
are the following linker vectors:

p0 = �0

0

0
�, p1 = ��b2 − d2

0

d
� and p2 = �x2

y2

d
� .

This means that the z axis of the coordinate system is the
axis of the fiber �d is given by Eq. �6� and b is the linker
length�. Now �p2 � =b leads to

y2 = �b2 − d2 − x2
2

and x2 can be calculated by using

cos��� =
�− p1�p2�

b2 Þ x2 = −
b2cos��� + d2

�b2 − d2

with d=
b sin��/2�

�csc2��/2�−cos2��/2�
; this leads to

y2 =�b2 − d2 −
�b2cos��� + d2�2

b2 − d2 =
d�b2cos2	�

2

sin2���

and now �e follows from the projection onto the x-y plane:

sin��e�
2

=
��x1 + x2�2 + y2

2

2�x2
2 + y2

2
Þ sin	�e

2



=�cos��/2�sin2��/2�
2�1 + cos����

. �A1�

As Eq. �A1� shows, �e decreases with increasing �. As a
consequence of this Nl decreases, too: If �e→0, then
Nl�� ,��= 2�

�−�e��,�� →2. So all fibers with high values of beta

need only approximately two nucleosomes for a complete
loop. This is confirmed by Fig. 2. As �e was assumed to be
constant, Nl was also constant in the calculations above. This
is a suitable approximation for small �. For larger � the
assumed values of Nl were a bit too large and therefore the
calculated values of 
 were a bit too small—but this effect is
small compared to the other estimations which were made
above. The error of 
, due to the assumption that Nl is con-
stant, increases with increasing �.
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